To force Nginx to download files, you can add the following to your config:
location /static/downloads {
 add_header Content-disposition "attachment; filename=$1";
 default_type application/octet-stream;
}

Restart Nginx, and anything in /static/downloads should be downloaded instead of processed as HTML.
You can also try adding the following to your nginx.conf server section:
location ~* (./? |\mp3|\mp4)$ (
 types (application/octet-stream (. mp3|. mp4);
)
default_type application/octet-stream;
)

Nginx usually uses the file extension to determine which MIME type to use, but this can be turned off in a location.
You can also configure NGINX to serve static content by defining the root directory. This directive can be placed on any level within the http(), server(), or location() contexts.

Configuring Nginx to Serve Static Content
https://docs.nginx.com/nginx/admin-guide/web-server/serving-static-content/

Configure NGINX and NGINX Plus to serve static content, with type-specific root directories, checks for file existence, and performance optimizations.
This section describes how to configure NGINX and NGINX Plus to serve static content, how to define which paths are searched to find requested files, how to set up index files, and how to tune NGINX and NGINX Plus, as well as the kernel, for optimal performance.
Root Directory and Index Files
The root directive specifies the root directory that will be used to search for a file. To obtain the path of a requested file, NGINX appends the request URI to the path specified by the root directive. The directive can be placed on any level within the http {}, server {}, or location {} contexts. In the example below, the root directive is defined for a virtual server. It applies to all location {} blocks where the root directive is not included to explicitly redefine the root:
server {
 root /www/data;

 location / {
 }

 location /images/ {
 }

 location ~ \.(mp3|mp4) {
 root /www/media;
 }
}

Here, NGINX searches for a URI that starts with /images/ in the /www/data/images/ directory in the file system. But if the URI ends with the .mp3 or .mp4 extension, NGINX instead searches for the file in the /www/media/ directory because it is defined in the matching location block.
If a request ends with a slash, NGINX treats it as a request for a directory and tries to find an index file in the directory. The index directive defines the index file’s name (the default value is index.html). To continue with the example, if the request URI is /images/some/path/, NGINX delivers the file /www/data/images/some/path/index.html if it exists. If it does not, NGINX returns HTTP code 404 (Not Found) by default.
To configure NGINX to return an automatically generated directory listing instead, include the on parameter to the autoindex directive:
location /images/ {
 autoindex on;
}

You can list more than one filename in the index directive. NGINX searches for files in the specified order and returns the first one it finds.
location / {
 index index.$geo.html index.htm index.html;
}

The $geo variable used here is a custom variable set through the geo directive. The value of the variable depends on the client’s IP address.
To return the index file, NGINX checks for its existence and then makes an internal redirect to the URI obtained by appending the name of the index file to the base URI. The internal redirect results in a new search of a location and can end up in another location as in the following example:
location / {
 root /data;
 index index.html index.php;
}

location ~ \.php {
 fastcgi_pass localhost:8000;
 #...
}

Here, if the URI in a request is /path/, and /data/path/index.html does not exist but /data/path/index.php does, the internal redirect to /path/index.php is mapped to the second location. As a result, the request is proxied.
Trying Several Options
The try_files directive can be used to check whether the specified file or directory exists; NGINX makes an internal redirect if it does, or returns a specified status code if it doesn’t. For example, to check the existence of a file corresponding to the request URI, use the try_files directive and the $uri variable as follows:
server {
 root /www/data;

 location /images/ {
 try_files $uri /images/default.gif;
 }
}

The file is specified in the form of the URI, which is processed using the root or alias directives set in the context of the current location or virtual server. In this case, if the file corresponding to the original URI doesn’t exist, NGINX makes an internal redirect to the URI specified by the last parameter, returning /www/data/images/default.gif.
The last parameter can also be a status code (directly preceded by the equals sign) or the name of a location. In the following example, a 404 error is returned if none of the parameters to the try_files directive resolve to an existing file or directory.
location / {
 try_files $uri $uri/ $uri.html =404;
}
In the next example, if neither the original URI nor the URI with the appended trailing slash resolve into an existing file or directory, the request is redirected to the named location which passes it to a proxied server.
location / {
 try_files $uri $uri/ @backend;
}

location @backend {
 proxy_pass http://backend.example.com;
}
[bookmark: _GoBack]

